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Abstract. We investigate the ∆S = 0 effective chiral Lagrangian from the instanton vacuum. Based on
the ∆S = 0 effective weak Hamiltonian from the operator product expansion and renormalization group
equations, we derive the strangeness-conserving effective weak chiral Lagrangian from the instanton vacuum
to order O(p2) and the next-to-leading order in the 1/Nc expansion at the quark level. We find that the
quark condensate and a dynamical term which arise from the QCD and electroweak penguin operators
appear in the next-to-leading order in the 1/Nc expansion for the ∆S = 0 effective weak chiral Lagrangian,
while they are in the leading order terms in the ∆S = 1 case. Three different types of form factors are
employed and we find that the dependence on the different choices of the form factor is rather insensitive.
The low-energy constants of the Gasser–Leutwyler type are determined and discussed in the chiral limit.

PACS. 12.40.-y, 14.20.Dh

1 Introduction

A great deal of attention has been paid to parity violation
(PV) in the electroweak standard model (SM) well over
decades in the context of high-precision tests for the SM [1].
A recent series of parity-violating experiments in atomic
physics measured the weak charge of the SM [2–5]. Its
discrepancywith theSMimplies apossibilityofnewphysics,
for example, a possible existence of theZ ′ boson in addition
to the Z0 boson [6–8]. Recently, strangeness-conserving
(∆S = 0) weak processes have paved the way of probing
subtle properties of the nucleon such as the strangeness in
the nucleon: The strange vector form factors were recently
extracted by measuring the asymmetries of PV ep parity-
violating scattering [9]. Hadronic and nuclear PV processes,
however, are far from being clearly understandood due to
the screening of the strong interaction.

A simple framework to describe hadronic and nuclear
PV processes is one-boson exchange (OBE) such as π-,
ρ-, and ω-changes [10–12] à la the strong nucleon–nucleon
potential through OBE [13, 14]. The main ingredients of
the PV OBE model are the weak meson–nucleon coupling
constants such as hπ, hρ, and hω, which can be extracted
from PV observables in various hadronic and nuclear reac-
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tions like pp elastic scattering [15], np → dγ [16, 17], and
18F∗ → 18F [18]. In particular, the weak pion–nucleon cou-
pling constant h1

π is one of the most important quantities
dominant in PV weak hadronic processes at low-energy re-
gions [10,19–21]. However, disagreement in determining the
h1

π still exists [22] theoretically as well as experimentally.
A recent series ofworks [23–25] studied theh1

π within the
Skyrme model, based on the effective current–current in-
teraction which can be identified as a factorization scheme.
However, it is natural to describe the ∆S = 0 PV processes
based on the effective weak Hamiltonian evolved from a
scale of 80 GeV down to around 1 GeV [10,26–29]. Further-
more, it is well known that the non-leptonic weak processes
defy any explanation from the factorization, or the strict
large-Nc limit. The octet enhancement in K → ππ decays
is partially explained by gluon penguin diagrams, which
indicates that the strong interaction plays an essential role
in describing the non-leptonic or hadronic decay processes.
Thus, in the present work, we shall derive the ∆S = 0 ef-
fective weak chiral Lagrangian (EWχL) incorporating the
effective weak Hamiltonian [10], based on the non-local
chiral quark model from the instanton vacuum [30], which
will provide a good theoretical framework in studying the
weak coupling constants [31]. We shall consider the ∆S = 0
EWχL to order O(p2) in the chiral limit and to the next-
to-leading order (NLO) in the 1/Nc expansion, keeping in
mind that the present results of the NLO in Nc corrections
are just a part of the whole 1/Nc NLO contributions.
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Table 1. Strong enhancements with selected values of K. θW and θC are the Weinberg and the Cabbibo
angles, respectively

K = 1 K = 4 K = 7

α11 cot θC 1.126 cot θC 1.266 cot θC

α22 tan θC 1.126 tan θC 1.266 tan θC

β11 0 −0.307 cot θC −0.479 cot θC

β22 0 −0.307 tan θC −0.479 tan θC

γ11 −0.002
(
1 − 2

3 sin2 θW
)
csc 2θC 0.077

(
1 − 2

3 sin2 θW
)
csc 2θC 0.163

(
1 − 2

3 sin2 θW
)
csc 2θC

γ12 0.007 sin2 θW csc 2θC 0.001 sin2 θW csc 2θC 0.006 sin2 θW csc 2θC

γ21 −0.671 sin2 θW csc 2θC −0.772 sin2 θW csc 2θC −0.898 sin2 θW csc 2θC

γ22 (1 − 2 sin2 θW) csc 2θC 1.101(1 − 2 sin2 θW) csc 2θC 1.236(1 − 2 sin2 θW) csc 2θC

ρ11 0 −0.190
(
1 − 2

3 sin2 θW
)
csc 2θC −0.296

(
1 − 2

3 sin2 θW
)
csc 2θC

ρ12 0.003 sin2 θW csc 2θC 0.260 sin2 θW csc 2θC 0.453 sin2 θW csc 2θC

ρ21 −0.001 sin2 θW csc 2θC 0.002 sin2 θW csc 2θC −0.032 sin2 θW csc 2θC

ρ22 0 −0.307(1 − 2 sin2 θW) csc 2θC −0.479(1 − 2 sin2 θW) csc 2θC

The non-local chiral quark model induced from the in-
stanton vacuum has several virtues: It was shown that
this momentum dependence gives the correct end-point
behavior of the quark virtuality for the pion wave func-
tion [32, 33]. Similarly, recent investigations on the ef-
fective weak chiral Lagrangian [34–36] indicate that the
momentum-dependent quark mass plays a significant role
in enhancing the ∆T = 1/2 channel. Furthermore, non-
locality of the quark introduces a unique feature to the
low-energy constants (LEC) [37], compared to other mod-
els.

The paper is organized as follows: In Sect. 2, we show
how to incorporate the ∆S = 0 effective weak Hamiltonian.
In Sect. 3, we discuss the present results of the low-energy
constants. In particular, the behavior of the LEC is stud-
ied with respect to the momentum-dependent quark mass.
In the last section, we summarize the present work and
draw conclusions.

2 ∆S = 0 effective weak chiral Lagrangian

In this section, we will show how to incorporate the ∆S = 0
effective weak Hamiltonian into the effective chiral action
from the instanton vacuum. The detailed description can
be found in [36]. We employ the ∆S = 0 effective PV weak
Hamiltonian derived in [10]. The Hamiltonian reads

H∆S=0
W =

GF√
2

cos θC sin θC

×

 2∑

i,j=1

(
αijO

(
A†

i , Aj

)
+ βijO

(
A†

i tA, AjtA

)
+ h.c.

)

+
2∑

i,j=1

(
γijO

(
B†

i , Bj

)
+ ρijO

(
B†

i tA, BjtA

)) , (1)

where the operator O(M,N) is defined as O(M,N) ≡
−ψ†γµγ5Mψψ†γµNψ in Euclidean space, and tA denotes

the generator of the color SU(3) group, normalized as
tr tAtB = 2δAB . The definitions of the matrices Ai and
Bi, and the coefficients α, β, γ and ρ are given in [10].
These coefficients are the functions of the scale-dependent
Wilson coefficient K(µ) defined as

K(µ) ≡
(

1 +
g2(µ2)
16π2 b ln

M2
W

µ2

)
, (2)

where g is the strong coupling constant, µ is the renormal-
ization point and specifies the mass scale, b = 11− 2Nf/3,
and MW is the mass of the W boson. K encodes the ef-
fect of the strong interaction from the perturbative gluon
exchanges. Numerical values of the coefficients relevant to
our discussion with various K values are listed in Table 1.
We denote the four-quark operators generically by

Qi(x) = −ψ†(x)Γ i
1ψ(x)ψ†(x)Γ i

2ψ(x) , (3)

where i = 1 . . . 12 labels each four-quark operator in the
effective weak Hamiltonian and Γ i

1(2) consist of the γ and
the flavor matrices. Thus, the effective weak Hamiltonian
can be rewritten as follows:

H∆S=0
W =

12∑
i=1

CiQi(x), (4)

where Ci denotes α, β, γ and ρ in (1).
The ∆S = 0 effective PV weak Hamiltonian can be

incorporated into the non-local chiral quark model as fol-
lows:

exp(−S∆S=0
eff )

=
∫

DψDψ† exp
(∫

d4x
(
ψ†Dψ − H∆S=0

W

))
, (5)

where theD denotes thenon-localDirac operator definedby

D(−i∂) ≡ iγµ∂µ + i
√
M(−i∂)Uγ5(x)

√
M(−i∂). (6)
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Since the Fermi constant GF is very small, we can expand
the exponent in (5) in powers of GF and keep the lowest
order only. Thus, the ∆S = 0 EWχL can be derived as

L∆S=0
eff =

∫
DψDψ†H∆S=0

W exp
∫

d4z ψ†(z)Dψ(z). (7)

The vacuum expectation value (VEV) of the four-fermion
operators in the effective weak Hamiltonian can be calcu-
lated as

〈Qi(x)〉

= − 1
Z
∫

d4yδ4(x− y)
δ

δJ i
1(x)

δ
δJ i

2(y)

∫
DψDψ†

× exp
∫

d4z ψ†(z)

(D + J i
1(z)Γ

i
1 + J i

2(z)Γ
i
2)ψ(z)

∣∣∣∣
J1=J2=0

= trc,γ,f

[
〈x|D−1Γ

(i)
1 |x〉〈x|D−1Γ

(i)
2 |x〉

]
− trc,γ,f

[
〈x|D−1Γ

(i)
1 |x〉

]
trc,γ,f

[
〈x|D−1Γ

(i)
2 |x〉

]
,(8)

where trc,γ,f means the trace over color, spin, and flavor
space, respectively. The last two lines in (8) correspond to
the unfactorized and factorized quark loops, respectively.
〈x|(D)−1Γ

(i)
1,2|x〉 can be easily calculated as

〈x|D−1Γ
(i)
l |x〉 (9)

=
∫

d4k

(2π)4
1

D†(∂ + ik)D(∂ + ik)
D†(∂ + ik)Γ (i)

l .

The denominator of (9) can be expanded to order O(k2)
as follows:

D†(∂ + ik)D(∂ + ik)

= −∂2 + k2 − 2ik · ∂ +M2 −M (γµ∂µU
γ5)

−2iMM̃ ′kµ

[
2∂µ + U−γ5 (∂µU

γ5)
]

−MM̃ ′ [2∂2 + U−γ5
(
∂2Uγ5

)
+ 2U−γ5 (∂µU

γ5) ∂µ

]
−2MM̃ ′′kµkν

× [2∂µ∂ν + U−γ5 (∂µ∂νU
γ5) + 2U−γ5 (∂µU

γ5) ∂ν

]
−2M̃ ′2kµkν

[(
∂µU

−γ5
)
(∂νU

γ5) (10)

+U−γ5 (∂µ∂νU
γ5) + 2U−γ5 (∂µU

γ5) ∂ν + 2∂µ∂ν

]
+iM̃ ′kµ [(∂µ γ · ∂Uγ5) + 2 (γ · ∂Uγ5) ∂µ] + O (∂3) .

The numerator reads

D† (∂ + ik) = iγµ (∂µ + ikµ) − iB, (11)

where

B = M(k)U−γ5 − iM̃ ′k · (∂U−γ5
)

−
(
M ′′ − M̃ ′2

2M

)
kαkβ

(
∂α∂βU

−γ5
)− M̃ ′

2
. (12)

Therefore, we have

〈x|D−1Γ
(i)
l |x〉

=
∫

d4k

(2π)4
1

k2 +M2(k) −A
(iγµkµ −B)(iΓ (i)

l )

=
∞∑

n=0

∫
d4k

(2π)4
1

k2 +M2(k)

(
1

k2 +M2(k)
A

)n

×(iγµkµ −B)(iΓ (i)
l ), (13)

where the form of A can be extracted from (10). The ex-
pansion of (13) yields the terms to order O(∂2):

〈x|D−1Γ
(i)
l |x〉

=
(I1U

−γ5 + I2U
−γ5 (∂αU

γ5) γα + I3
(
∂2U−γ5

)
+ I4U

−γ5 (∂αU
γ5)
(
∂βU

γ†
5

)
γαγβ

)
iΓ (i)

l (14)

with the coefficients

I1 = −
∫

d4k

(2π)4
M(k)

k2 +M2(k)
=

〈
ψψ
〉
M

4Nc
, (15)

I2 =
∫

d4k

(2π)4
M2(k) − k2

2 M(k)M̃ ′

(k2 +M2(k))2
, (16)

I3 =
∫

d4k

(2π)4

[
1
4 M̃

′′k2 + 1
2 M̃

′ − M̃ ′2
8M k2

k2 +M2(k)

−M +M2M̃ ′ + k2

2 M
2M̃ ′′ + 1

2 k
2MM̃ ′2 + k2

4 M̃
′

(k2 +M2(k))2

+k2
1
2M + 2M2M̃ ′ +M3M̃ ′2

(k2 +M2(k))3

]
, (17)

I4 =
∫

d4k

(2π)4
−M3 + k2M2M̃ ′

(k2 +M2(k))3
. (18)

Substituting (14) into (8), taking trace over color and spin
spaces, and summing all four-fermion operators, we arrive
at the ∆S = 0 EWχL to order O(∂2) in terms of the
Goldstone boson fields with the LEC determined:

L∆S=0
eff

= N1 (〈(Rµ − Lµ)λ1〉 〈(Rµ + Lµ)λ1〉
+ 〈(Rµ − Lµ)λ2〉 〈(Rµ + Lµ)λ2〉)
+N2 (〈(Rµ − Lµ)λ4〉 〈(Rµ + Lµ)λ4〉
+ 〈(Rµ − Lµ)λ5〉 〈(Rµ + Lµ)λ5〉)
+N3 〈Rµ − Lµ〉 〈Rµ + Lµ〉

+N4 〈Rµ − Lµ〉
〈

(Rµ + Lµ)
(

− I

3
+ λ3 +

1√
3
λ8

)〉
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+N5

〈
(Rµ − Lµ)

(
− I

3
+ λ3 +

1√
3
λ8

)〉
〈Rµ + Lµ〉

+N6

〈
(Rµ − Lµ)

(
− I

3
+ λ3 +

1√
3
λ8

)〉

×
〈

(Rµ + Lµ)
(

− I

3
+ λ3 +

1√
3
λ8

)〉

+N7 〈Rµλ1R
µλ1 − Lµλ1L

µλ1 +Rµλ2R
µλ2

−Lµλ2L
µλ2〉

+N8 〈Rµλ4R
µλ4 − Lµλ4L

µλ4 +Rµλ5R
µλ5

−Lµλ5L
µλ5〉

+N9

〈
(RµR

µ − LµL
µ)
(
λ3 +

1√
3
λ8

)〉

+N10

〈
Rµ

(
λ3 +

1√
3
λ8

)
Rµ

(
λ3 +

1√
3
λ8

)

−Lµ

(
λ3 +

1√
3
λ8

)
Lµ

(
λ3 +

1√
3
λ8

)〉
(19)

where Rµ ≡ iU∂µU
†, 〈. . .〉 represents again the trace over

flavor space, and Ni denote the LEC expressed as follows:

N1 = 2N2
c I2

2 α̃11, N2 = 2N2
c I2

2 α̃22, N3 = 4N2
c I2

2 γ̃11,

N4 = 4N2
c I2

2 γ̃12, N5 = 4N2
c I2

2 γ̃21, N6 = 4N2
c I2

2 γ̃22,

N7 = 2NcI2
2

(
α̃11 + 2β̃11

)
,

N8 = 2NcI2
2

(
α̃22 + 2β̃22

)
,

N9 = 4Nc [4I1I3 (γ̃12 + γ̃21 + 2ρ̃12 + 2ρ̃21)

+ I2
2 (γ̃12 − γ̃21 + 2ρ̃12 − 2ρ̃21)

]
,

N10 = 4NcI2
2 (γ̃22 + 2ρ̃22) . (20)

Here, C̃ij stand for GF√
2

sin θC cos θCCij generically, where
Cij = α, β, γ, ρ in (1). Note that the αij and γij enter in
the leading order (LO) Lagrangian, while the βij and ρij

appear only in the subleading order in Nc. The numerical
evaluation of the LEC will be discussed in the next section.

3 Results and discussion

The large Nc expansion in the context of non-leptonic de-
cays have been discussed already extensively [38–43]. While
the large Nc argument works very well in the strong in-
teraction, it does not seem to describe the non-leptonic
weak interactions in the leading order (LO) of the large
Nc expansion. The strict 1/Nc expansion is identical to a
naive factorization: There is no mixing in the operators
and it leaves only the original four-quark operator which
contains the product of two conserved currents. Thus, one
has to consider the NLO in the 1/Nc expansion. However, if
the NLO contribution is large, a problem of its convergence
would arise. Moreover, there are various sources of the NLO

corrections in the large Nc expansion such as mesonic loop
contributions. We are not in a position to take into account
all possible NLO corrections in this work. Thus, we will
restrict our scheme in the following: First, we will treat
the Wilson coefficients in a more practical way, i.e. we will
not consider the Nc behavior of the Wilson coefficients.
Second, we consider the NLO in the 1/Nc expansion at the
quark level. It does not mean that these corrections are
more important or favorable, compared to other 1/Nc cor-
rections such as mesonic loop corrections. We only intend
in the present work to compare the LO contribution with
the NLO corrections at the quark level. By doing that, we
will see that the structure of the ∆S = 0 EWχL is rather
different from the ∆S = 1 EWχL.

We first consider the ∆S = 0 EWχL in the LO of
Nc, and investigate its behavior with respect to the form
factors and the Wilson coefficients. In the large Nc limit,
the EWχL becomes

L∆S=0,N2
c

eff

=
16I2

2N
2
c

f4
π

[
2

(
α̃11

2∑
i=1

V i
µA

iµ + α̃22

5∑
i=4

V i
µA

iµ

)

+9γ̃11A
0
µV

0µ

+3γ̃12

(
−V 0

µ + 2V 3
µ +

2√
3
V 8

µ

)
A0µ

+3γ̃21

(
−A0

µ + 2A3
µ +

2√
3
A8

µ

)
V 0µ

+γ̃22

(
−V 0

µ + 2V 3
µ +

2√
3
V 8

µ

)

×
(

−A0µ + 2A3µ +
2√
3
A8µ

)]
, (21)

where V a
µ and Aa

µ are the vector and axial-vector currents,
respectively, defined as

V a
µ =

f2
π

2
〈T a(Rµ + Lµ)〉 , Aa

µ =
f2

π

2
〈T a(Rµ − Lµ)〉 .

(22)
T a is the generator of the Uf (3), T a =

(
1
3 ,

λ1

2 , . . . ,
λ8

2

)
.

The EWχL given in (21) has one caveat: In the large
Nc limit the four-quark operators turn out to be products
of two conserved currents, i.e. the vector and the axial-
vector currents. However, the presence of the non-local
interaction between quarks and Goldstone bosons, which
arises from the momentum-dependent quark mass, breaks
the gauge invariance, so that the currents are not conserved.
Reference [36] discussed a method of how to avoid this
problem. The conserved currents in Euclidean space with
the non-local interactions can be derived by gauging the
partition function. The pion decay constant f2

π can be
successfully reproduced by using the modified axial-vector
current in the following matrix elements:〈

0
∣∣Aa

µ(x)
∣∣πb(p)

〉
= ifπpµeip·xδab, (23)
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which indicates that theTakahashi–Ward identity of PCAC
is well satisfied with the modified conserved axial-vector
current. If we use the usual currents such as Aa

µ =
ψ̄γµγ5λ

aψ, we would end up with the Pagels–Stokar ex-
pression for f2

π :

f2
π(PS) = 4Nc

∫
d4k

(2π)4
M2 − 1

4MM ′k
(k2 +M2)2

. (24)

Thus, one has to consider themodified conserved currents in
(21). However, if we use the f2

π(PS) for the normalization of
the effective chiral Lagrangian for convenience, we need not
introduce them in (21), since we derive the same results as
we use the modified conserved currents. Thus, the prefactor
16I2

2N
2
c in (21) turns out to be f4

π .
Moreover, in the strict large Nc limit, the original Cab-

bibo and Weinberg–Salam Lagrangians need not any renor-
malization, i.e. the termswithα11,α22, γ21, and γ22 survive.
Thus, the ∆S = 0 EWχL in the large Nc limit becomes

L∆S=0,N2
c

eff

=
√

2GF

{
cos2 θC

2∑
i=1

V i
µA

iµ + sin2 θC

5∑
i=4

V i
µA

iµ

−
(

cos 2θW

(
V 3

µ +
1√
3
V 8

µ

)
− 1

2
V 0

µ

)

×
(

1
2
A0µ −A3µ − 1√

3
A8µ

)}
. (25)

If we take the limit θC → 0, (25) becomes identical to
that in [25]. However, if we take a more practical point
of view about the large Nc behavior of the anomalous
dimensions [36], we get the ∆S = 0 EWχL in the LO of
Nc:

L∆S=0,N2
c

eff

= 2

(
α̃11

2∑
i=1

V i
µA

iµ + α̃22

5∑
i=4

V i
µA

iµ

)
+ 9γ̃11A

0
µV

0µ

+3γ̃12

(
−V 0

µ + 2V 3
µ +

2√
3
V 8

µ

)
A0µ

+3γ̃21

(
−A0

µ + 2A3
µ +

2√
3
A8

µ

)
V 0µ

+γ̃22

(
−V 0

µ + 2V 3
µ +

2√
3
V 8

µ

)

×
(

−A0µ + 2A3µ +
2√
3
A8µ

)
. (26)

We are now in a position to discuss the LEC in (19),
which consist of theWilson coefficients, the dynamic factors
Ii, Cabbibo and Weinberg angles, and the Fermi constant
GF, among which the Ii characterize the important feature
of the present approach. As shown in (15), the dynamic
factorI1 is identifiedas thequarkcondensate.Reference [36]
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Fig. 1. The dynamic factor I3 as a function of M0. The solid
curve is drawn with the zero-mode form factor, while the dashed
one depicts the dipole-type form factor. The dotted one is for
the Gaussian form factor

discussed the dependence of the quark condensate on the
M0, where the zero-mode anddipole-type form factors show
a similar dependence, while the Gaussian type brings down
the quark condensate noticeably. The I2 is identical to the
Pagels–Stokar pion decay constant given in (24), which is
approximately 20% smaller than the correct f2

π [35,44,45].
Thedynamic factorI3 is plottedasa functionofM0 inFig. 1.
As in the case of I1, the Gaussian-type form factor gives
the smallest value. It is interesting to compare the present
results with those in the case of the ∆S = 1 EWχL [36] for
which the quark condensate and I3-like terms arise from
the QCD and electroweak penguin operators, so that they
appear in the LO of the Nc expansion (O(N2

c )). However,
they are found here in the NLO (O(Nc)) at the quark level.

Taking into account the current conservation properly,
we can express the LEC in terms of the pion decay constant
fπ, the quark condensate 〈ψ̄ψ〉, I3, and the Wilson coeffi-
cients:

N1 =
f4

π

8
α̃11, N2 =

f4
π

8
α̃22, N3 =

f4
π

4
γ̃11,

N4 =
f4

π

4
γ̃12, N5 =

f4
π

4
γ̃21, N6 =

f4
π

4
γ̃22,

N7 =
f4

π

8Nc

(
α̃11 + 2β̃11

)
, N8 =

f4
π

8Nc

(
α̃22 + 2β̃22

)
,

N9 = 4〈ψψ〉MI3 (γ̃12 + γ̃21 + 2ρ̃12 + 2ρ̃21)

+
f4

π

4Nc
(γ̃12 − γ̃21 + 2ρ̃12 − 2ρ̃21) ,

N10 =
f4

π

4Nc
(γ̃22 + ρ̃22) . (27)

The corresponding numerical results are listed in Ta-
bles 2 and 3. We find that only N9 depends on the type
of form factors.

There is one last remark: We want to mention that there
is amatchingproblembetween the scale of the effectiveweak
Hamiltonian and that of the non-local chiral quark model
from the instanton vacuum. While the scale of the effective
weak Hamiltonian is determined by the renormalization
point, which is around 1 GeV, that of the non-local chiral
quark model comes from the average size of the instanton,
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Table 2. Numerical results of the low-energy constants given
in unit of 10−5MeV2. The zero-mode form factor is employed
with M0 = 350 MeV

K = 1 K = 4 K = 7

N1 7.38 8.31 9.34

N2 0.39 0.44 0.50

N3 −0.02 0.51 1.07

N4 0.01 0.00 0.01

N5 −1.22 −1.40 −1.63

N6 4.13 4.55 5.11

N7 2.46 1.26 0.75

N8 0.13 0.07 0.04

N9 −7.49 −2.17 0.53

N10 1.38 0.67 0.38

Table 3.Numerical results for N9 are given in unit of 10−5MeV2

with the dipole-type and the Gaussian-type form factors at
M0 = 350 MeV. The N9 value for the zero-mode form factor is
given in Table 2

Form factor K = 1 K = 4 K = 7

Dipole −6.45 −1.78 0.61

Gaussian −2.81 −0.42 0.90

i.e. 1/ρ � 600 MeV. Strictly speaking, one has to match
these two different scales [46]. However, we will not consider
this problem here, since it is a rather delicate one and
requires a more cautious investigation.

4 Summary and conclusions

In the present work, we concentrated on deriving the ∆S =
0effectiveweakLagrangian incorporating the effectiveweak
Hamiltonian [10].Basedon thenon-local chiral quarkmodel
from the instanton vacuum,we obtained the∆S = 0parity-
violating effective weak chiral Lagrangian with the low-
energy constants of the Gasser–Leutwyler type determined.
Thedependence of the low-energy constants on thedynamic
quark massM0 and on the type of form factors was studied.

The effects of the strong interaction were introduced
according to the two different origins: The effect of non-
perturbative QCD which is implemented in the non-local
chiral quark model from the instanton vaccum, and the
Wilson coefficients which encode the effect of perturbative
gluons [10]. In contrast with the ∆S = 1 effective weak
chiral Lagrangian [35,36], the factorized quark loops in the
integration over the quark field yield the LO terms, while
the unfactorized quark loops do the NLO terms. We have
determined the low-energy constants consisting of the Wil-
son coefficients and dynamical quantities such as the pion
decay constant and chiral condensate. We have estimated
the strong enhancement effects in the LO of the 1/Nc ex-
pansion. When it is neglected, our result turns out to be
equivalent with the effective weak chiral Lagrangian used
by [25].

The ∆S = 0 effective weak chiral Lagrangian in the
present work can be utilized to various strangeness–con-
serving weak hadronic processes. For example, one can
derive the weak meson coupling constants such as h1

π. One
can also study the parity-violating non–leptonic weak inter-
actions of mesons such as η → π+π− or η → 2π0 of which
the upper bound of the decay modes are experimentally
known only [47].
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